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Abstract. Reverse Monte Carlo modelling of isotopic substitution neutron diffraction data for
molten CuBr (D Allen and R A Howe 1992J. Phys.: Condens. Matter4 6029) is used to
show that a flat partial radial distribution functiongCuCu(r) is a possible numerical solution,
but not a possible physical solution. The best model derived is a close-packed liquid of Br−
ions within which Cu+ ions occupy approximately tetrahedral interstices. This structure is a
natural continuation of trends as a function of temperature within the crystallineγ -phase and
the fast-ion-conductingβ- andα-phases.

1. Introduction

The structures of the molten copper halides have been studied and discussed for nearly 30
years. In one of the first neutron diffraction measurements using the technique of isotopic
substitution to separate partial structure factors,Aij (Q), and hence derive partial radial
distribution functions,gij (r), Page and Mika [1] found evidence for a very flat (i.e. disor-
dered)gCuCu(r), almost ‘gas-like’ in CuCl. Given that this result was rather different from
the cation–cation correlations later found in similar studies of molten alkali halides [2–4],
Eisenberget al [5] repeated the measurement on CuCl and also derived a rather flatgCuCu(r),
though slightly more structured than the earlier result. However, reverse Monte Carlo
(RMC) modelling [6] of the data from [5] derived a definite first peak ingCuCu(r), compara-
ble to that found for molten LiCl [7] (Li and Cu have similar ionic radii). In addition no com-
puter simulation (see e.g. [8]) has yet been able to reproduce the flatgCuCu(r) derived in [1]
and [5]. This seems to suggest that the flatgCuCu(r) is an artefact of the (very difficult) data
analysis required to derivegij (r). However, in a more recent experiment on molten CuBr,
Allen and Howe [9] have derived agCuCu(r) that is extremely flat, which then suggests that
the RMC result may be wrong. In order to clarify the situation we have undertaken an RMC
modelling study of molten CuBr. We show that a flatgCuCu(r)may be consistent with the ex-
perimental data in a numerical sense, but it cannot be reproduced by a physical structure and
is therefore not ‘real’. It is probably caused by the use of a maximum-entropy method (which
favours flat functions) to derivegij (r) in [9]. Features of the RMC models for molten CuCl
and CuBr are then discussed in relation to fast-ion (Cu) conduction in the crystalline phases.

2. MCGR derivation of gij(r)

The four experimentally measured structure factors [9],F (k)(Q) (k = 1–4), for molten
CuBr are shown in figure 1. These are related to the partial structure factors,Aij (Q), by

F (k)(Q) =
∑
i,j

cicj b
(k)
i b

(k)
j (Aij (Q)− 1) (1)
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Figure 1. Total structure factors,F (k)(Q), for molten CuBr. Solid: experimental data [9];
dashed: MCGR fit; dotted: RMC model (i); chain: RMC model (iii). Top left:100%63CuBr; top
right: 100%65CuBr; bottom left: 50%63+50%65CuBr; bottom right:69%63+31%65CuBr.

wherei, j = Cu, Br,ci = 0.5 is the concentration andb(k)i is the coherent neutron scattering
length for speciesi in samplek. In the present case only the scattering length for Cu varies
between samples. The partial structure factors are related to the partial radial distribution
functions by

Aij (Q) = ρ
∫

4πr2 sinQr

Qr
(gij (r)− 1) dr. (2)

In a ‘conventional’ analysis theAij (Q) are determined by solution of the simultaneous
equations (1). (If the measurements are made for four samples the equations are over-
determined since there are only three independentAij (Q)).) Thegij (r) are then determined
from the direct Fourier transform (the inverse transform of equation (2)). Allen and Howe
[9] used an inverse method to obtaingij (r). A reference was not given, but the program is
believed to be MCGOFR [10], in which thegij (r) are generated numerically and modified
by a Monte Carlo method in order to obtain good agreement between the calculated and
measuredF (k)(Q). At the same time a constraint was applied to maximize the entropy,
defined as

H = −k
N∑
i=1

4πr2
i g(ri)(ln(g(ri))− 1) δr (3)

whereN is the number of points in theg(r) histogram andδr is the point spacing.k is a
constant (a Lagrange multiplier). The effect of maximizing the entropy is to produce the
‘flattest’ gij (r) which are consistent with the data. Note that this is not the same as the
‘smoothest’ since there are many possible definitions of ‘smooth’. This has been discussed
in detail elsewhere [11].

We have derivedgij (r) using essentially the same method (the program MCGR [12]),
but without the maximum-entropy constraint. An excellent fit to the data is achieved, as
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Figure 2. Partial radial distribution functions,gij (r), for molten CuBr. Solid: RMC model
(i); dashed: RMC model (ii); dotted: from [9]; chain: anomalous x-ray scattering results (from
[17]).

shown in figure 1; the derivedgij (r) are shown in figure 2.gCuCu(r) is not flat, but rather
has a distinct peak. This shows that a flatgCuCu(r) is only one possiblenumericalsolution
within the experimental errors; we show in the next section that it is not a possiblephysical
solution.

3. RMC modelling

The RMC method has been described in detail elsewhere [13], in particular its application
to studies of molten salts [6]. In the present work we have used models of 4000 ions
in a cubic cell with periodic boundary conditions; all models were started from a random
distribution. No experimental value exists for the density of molten CuBr. The value
of 0.035 Å−3 used by Allen and Howe [9] was considered to be rather low in relation
to the known density of the crystal just before melting (0.041Å−3 [14]) and the density
change of the related materials CuCl and AgI on melting. For this reason we have tested
densities of 0.035Å−3 and 0.038Å−3. This is found to make no significant difference
to the results. (After completion of this work one of the referees drew our attention to
an experimental value for the density of 0.0363Å−3 [15].) A number of different values
of the allowed closest-approach distances of atoms have been tested. These are based on
the direct solution forgij (r) and information from studies of crystalline CuBr [14]. The
values for Cu–Br and Br–Br were chosen as 1.9 and 2.9Å respectively. Using lower values
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produced no significant changes in the results. The Cu–Cu closest approach has been varied
between 1.0 and 3.5̊A. Values larger than 2.1̊A resulted in a sharp ‘spike’ ingCuCu(r)

at the cut-off distance. The spike disappeared for a closest approach less than 2.0Å and
decreasing the value further made no significant difference to the results, so this value has
been used except in the case of the fit togij (r) derived by Allen and Howe [9] where a
value of 1.8Å, consistent with their result, has been used.

Figure 3. Partial structure factors,Aij (Q), for molten CuBr. Solid: RMC model (i); dashed:
the EXAFS result (from [15]); dotted: anomalous x-ray scattering results (from [17]).

Three RMC models have been produced.

(i) Fitting directly to the experimentalF (k)(Q).
(ii) Fitting to the gij (r) derived by MCGR (section 2).
(iii) Fitting to the gij (r) derived by Allen and Howe [9].

The correspondingF (k)(Q) andgij (r) are shown in figures 1 and 2 respectively. It was
not possible to obtain a good fit in case (iii). TheF (k)(Q) derived from the best fitgij (r)
in this case are significantly different from the experimental results. This indicates quite
clearly that the Allen and Howe solution forgij (r) [9] is a possiblenumericalsolution, but
not a possiblephysicalsolution. It was also not possible to obtain a very good fit in case
(ii), though this was significantly better than case (iii). This indicates that the MCGR result
is also not a possible physical solution. The main improvement comes from the increased
height of the first peak ingCuBr(r), which is probably ‘over-flattened’ in the Allen and Howe
solution by the maximum-entropy constraint [9].

We would suggest that the most reliable set ofgij (r) is that for case (i). Not only do
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Figure 4. Angular correlations between near-neighbour atoms,Pijk(cosθ), for molten CuBr
from RMC model (i). Br–Br neighbours are defined within 5.2Å, Cu–Br within 3.3 Å and
Cu–Cu within 5.1Å (solid) and 3.2Å (dashed). The results forPBrBrBr are compared to those
for molten Rb (dotted) [18].

they agree very well with the original data, but they also correspond to a physical model.
However, we would stress that this isnot a unique solution. There will be a number of sets
of gij (r) that satisfy the same criteria. Using a method that we have developed elsewhere
for assessing the relative information content of different sets of isotopic substitution data
[16] we find that the cosines of the angles between the characteristic vectors vary from 0.96
to 0.99. All of the values are very close to 1, which indicates that the four total structure
factors have almost the same information content in terms of the partial structure factors.
All of the RMC results forgBrBr(r) will therefore be very similar, those forgCuBr(r) will
be slightly different, but there may be large variations in possible solutions forgCuCu(r).

Very recently an anomalous x-ray diffraction study of molten CuBr has been reported
[17]. The partial radial distribution functions derived (also using RMC) are shown in
figure 2. There is very good agreement forgBrBr(r) and gCuBr(r). The x-ray result for
gCuCu(r) is intermediate between the RMC model (i) and MCGR results. In common with
those results it shows definite structure and peaks at a significantly lowerr-value than
gBrBr(r). The cosines of the angles between the characteristic vectors for the x-ray data
vary between 0.49 and 0.89, so the result forgCuCu(r) is in principle better than for the
neutron data. However, in practice the x-ray data will contain larger systematic errors and
hence the final errors in the two results are probably comparable.

The partial structure factors corresponding to RMC model (i) are shown in figure 3.
ACuBr is in good agreement with the results of a recent EXAFS study [18], except at the
lowestQ (this is the region where EXAFS is least reliable). ThegCuBr(r) derived from
EXAFS has a significantly higher peak than the Allen and Howe result, and is also slightly
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higher than the RMC model (i) result. This difference could be due to the fact that the
EXAFS analysis has not considered any Cu–Cu contribution in the low-r region. Overall the
differences are small enough that we are sure that both neutron diffraction and EXAFS data
could be simultaneously fitted [19] without any significant changes to the RMC model (i).
The partial structure factors from anomalous x-ray scattering [17] are also shown in figure 3.
They agree well with the RMC model (i) results.

Figure 4 shows some of the angular correlations of near-neighbour atoms.PBrBrBr has a
shape typical of a close-packed simple liquid and is very similar to the result for molten Rb
[20] (Br− and Rb+ are isoelectronic); the Br–Br coordination number is 11 (up to 5.1Å).
Within this structure the Cu preferentially occupy approximately tetrahedral interstices—the
Cu–Br coordination is 3 (up to 3.3̊A) and PBrCuBr peaks at≈109◦. There is very little
angular correlation between neighbouring Cu atoms.

Figure 5. Partial radial distribution functions,gij (r). Solid: molten CuBr, RMC model (i);
chain: α-CuBr (from [14])

These results are consistent with studies of the crystal structure in the high-temperature,
fast-ion-conductingα-phase [14]. Figure 5 showsgij (r) for α-CuBr at 750 K. The first
peak ingBrBr is very similar but there is more long-range order in the crystal (as would
be expected). The first peak ingCuBr is lower than the RMC result for the liquid, but this
may partly be due to the shorterQ-range of the crystalline measurement (giving lower
real-space resolution). The coordination number in the crystal obtained by integrating up to
the first minimum, as in the liquid, is also≈3, though from the crystal structure it is clear
that the average coordination in a geometric sense is 4. This indicates that the coordination
number obtained from ag(r) should only be taken as an indication of the local environment.
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gCuCu(r) has a definite first peak at 2.5̊A for both the crystal and the liquid, being lower
in the liquid but with approximately the same area up to the first minimum. All of these
features indicate that Cu ions have a similar local environment in the crystal and liquid; it
is just slightly more disordered in the latter, as would be expected.

4. Discussion

For most isotopic substitution studies that are carried out in order to derive the partial radial
distribution functions for a disordered system, the coefficient matrix is badly conditioned—
in fact in most cases it is very badly conditioned. This means that there will be a wide range
of possible numerical solutions forgij (r) that agree equally well with the experimental data.
The onlyuniquesolution is that obtained by direct matrix inversion of the original data and
then direct Fourier transformation of the partial structure factors obtained (even this depends
on the particular prior corrections that have been made to the data). However, this solution
is very unlikely to be ‘correct’ since it will almost certainly involve finite values ofgij (r)

at low r, i.e. atoms being closer than they can physically be. Simply removing this low-r

part does not produce the correct solution either, since the systematic errors that produce
these lowr-values will also propagate to higherr. In addition there are almost certainly
truncation errors due to the finiteQ-range. These can be ‘modified’, but not removed, by
multiplying F (k)(Q) by an appropriate modification function [21].

Inverse methods, like the MCGR program used here, offer another route to possible
solutions forgij (r) which can include ‘physical’ constraints such as requiringgij (r) to be
zero at smallr. (Note that this is not the same as obtaininggij (r) that are non-zero at
low r and then removing the low-r part.) The use of maximum entropy as an additional
constraint will produce the ‘flattest’gij (r) that are consistent withF (k)(Q). However, there
is no physical or statistical reason to believe that this is a preferable solution. Certainly
gij (r) should be smoothed in some way to dampen statistical fluctuations which arise purely
as a result of the Monte Carlo method, but there are many possible methods of smoothing. It
should be noted that here it is the entropy of the derived functionsgij (r) that is maximized,
whereas a more ‘normal’ use would be to maximize the entropy of the function(s) that are
fitted to the data set itself, i.e.F (k)(Q). In addition the definition of entropy (equation (3))
is a ‘modified’ definition (normallyH = p lnp), required becauseg(r) is not a probability
function (it does not have a definite integral). We would therefore suggest that maximum
entropy, although it produces ‘nice-looking’gij (r), is neither mathematically or physically
appropriate in this situation. It is more important that a solution forgij (r) be physically
sensible and probably the simplest way of doing this is by RMC modelling.

With regard to CuBr we have shown that a flatgCuCu(r) is not a physically sensible
solution; the same applies for CuCl [6]. While a ‘flat’ result is appealing in a simple sense
because it provides an obvious link to the high cation conductivity in the corresponding
high-temperature crystals, it is now clear that such simplicity is misleading. Recent work
has shown that fast-ion conduction in the crystalline phases is not a simple process [22],
and there is no reason to suppose that it is in the liquid either. The influence of three-body
forces may mean that the situation in the molten Cu halides is in fact more complex than in
molten salts such as NaCl, where two-body forces alone provide a good description. For this
reason the results shown here are not in better agreement with existing simulations (e.g. [8])
than the results in [9], since the simulations have so far only used two-body potentials.

One other point should be commented on. In a fast-(cat)ion-conducting phase a high
degree of cation penetration into the first cation–anion coordination shell is to be expected,
since this distance corresponds to ‘lattice site–interstitial’ distances; there must be some
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degree of simultaneous occupation of lattice and interstitial sites if the material is conducting
and cations do not all diffuse coherently (or at infinite velocity). This effect will probably
persist into the liquid. It necessarily leads to a reduction in the height of the ‘normal’
first peak height ofgcation−cation (i.e. that at the same distance asganion−anion). The fact that
liquids which melt from fast-ion-conducting crystals show such an effect must therefore
be considered as almost inevitable. What is notable from RMC results for crystalline and
molten/crystalline AgBr, AgI, CuCl, CuBr and CuI [6, 14, 23–25] is that this penetration
results in a distinct peak at lowr (i.e. lower than that in the equivalent anion–anion partial),
indicating that this short cation–cation distance is a significant feature of the structure. The
peak intensity correlates well with the ionic conductivity, as should be expected from the
argument given above. If RMC models are constrained to attempt to remove the peak then
fits to the data are significantly worse. In a two-body approximation the only way to produce
such a peak, while retaining charge balance, might be to reduce the effective charge to an
extremely small value which would be considered unrealistic. Recent work by Wilsonet al
[26] suggests that three-body polarization effects may also be important, and in CuBr these
may include polarization of both anions and cations.
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